
Model-based Testing of Autonomous Systems  

based on Coloured Petri Nets 

Raimar Lill, Francesca Saglietti 

Chair of Software Engineering 

University of Erlangen-Nuremberg 

Martensstr. 3 

91058 Erlangen, Germany 

raimar.lill@informatik.uni-erlangen.de 

saglietti@informatik.uni-erlangen.de 

 

 

Abstract: The use of autonomous systems, including cooperating agents, is 

indispensable in certain fields of application. Nevertheless, the verification of 

autonomous systems still represents a challenge due to lack of suitable modelling 

languages and verification techniques. To address these difficulties, different 

modelling languages allowing concurrency are compared. Coloured Petri Nets 

(CPNs) are further analysed and illustrated by means of an example modelling 

autonomous systems. Finally, some existing structural coverage concepts for Petri 

Nets are presented and extended by further criteria tailored to the characteristics of 

CPNs. 

1 Introduction 

For reasons of flexibility and time efficiency modern software-based applications tend to 

decentralize the target functionality among a number of cooperating autonomous 

subsystems. This results in highly decoupled system units and an increasing multiplicity 

of interplay. Examples include mobile agents, as typical for robot applications. 

In general, the term autonomy is taken to indicate entities (humans, populations or 

technical systems) capable of providing themselves with their own laws. This includes 

the moral responsibility of individuals for their actions, the self-government of human 

populations, as well as the capacity of technical systems to make rational and informed 

decisions. 

The optimal degree of autonomy lies between the two extremes represented by fully 

decoupled agents and fully central controllers. It relies on essential rules of co-existence 

involving different communication patterns like the following ones: 

 

ARCS 2012 Workshops (G. Mühl, J. Richling, A. Herkersdorf eds.) 

8
th

 Workshop on Dependability and Fault Tolerance  

Lecture Notes in Informatics (LNI), Volume P-200,  Gesellschaft für Informatik, Bonn 2012 



− Separation of concerns: different agents may autonomously cooperate by carrying 

out parallel individual and independent sub-tasks. 

− Synchronization: as soon as each independent sub-task has been separately and 

autonomously concluded, a synchronization mechanism establishes appropriate 

communication between the cooperating parts for the purpose of organizing the next 

common activity. 

− Coordination: the communication of synchronized agents must be supported by a 

coordination mechanism determining a consensus on how to proceed. Typically, 

coordination tasks may be required to avoid or resolve conflicts due to concurrency, 

e.g. by mutual exclusion in case of shared resources. 

− Delegation: for the purpose of carrying out a complex activity, a process may 

delegate a sub-task to another process by invoking its support through synchronous 

or asynchronous message passing. 

− Feedback: agents may mutually influence their local or global behaviour by 

providing information on particular operating scenarios recently experienced, e.g. 

information on road traffic exchanged among communicating vehicles. The degree 

of influence exercised may depend on the amount and consistency of information 

broadcasted or by the number of agents broadcasting it. 

From the perspective of verification, one of the major challenges posed by autonomous 

systems refers to their inherent lack of compositionality. In fact, understanding the local 

behaviour of each individual system part does not suffice to comprehend all potential 

implications on global behaviour. In other words, the classical verification strategy based 

on separation of concerns provides only limited support here, as it does not allow for the 

deduction of global properties by derivation or composition of local properties. 

The observable emergent behaviour may reflect the intended target behaviour to be 

achieved by cooperation, but sometimes it may also reveal as surprising, undesired, or 

even unsafe by cascading of unpredicted side effects.  

In order to model concurrent behaviour of cooperating autonomous systems capturing 

the interaction patterns mentioned above, an appropriate modelling notation is to be 

selected, capable of supporting both the representation and the analysis of the system 

considered. As the observation and measurement of system behaviour in real situations 

is crucial for testing autonomous systems, representative test scenarios have to be 

derived from the modelling notation selected. 

The rest of the article is structured as follows: in section 2 different modelling notations 

are compared w.r.t. the considerations mentioned above. In section 3 CPNs are 

introduced by illustrating their syntactical and semantical highlights. In section 4 a CPN 

model of a system consisting of autonomous robots is introduced and illustrated in detail. 

This example confirms the decision taken in favour of CPNs and emphasizes the value 

of the corresponding modelling tool CPN Tools [JKW07]. In chapter 5 existing coverage 

criteria for Petri Nets are presented before introducing novel coverage criteria explicitly 

tailored to CPNs by focusing on token colours and on the occurrence of interleaving 

events in the net. 



2 Comparison of Modelling Notations for Autonomous Systems 

For the purpose of comparing different notations modelling autonomous systems, the 

following evaluation criteria were considered: 

− Understandability concerns the clarity of a modelling representation, including the 

availability of graphical visualization techniques. 

− Well-definedness ensures a unique interpretation of the underlying operational 

semantics as offered by formal languages and required for the analyzability of 

central properties like state reachability. A well-defined semantics is the basis for 

tool support concerning the analysis of model data. 

− Scalability concerns the ease of widening the problem dimensions without 

prohibitively increasing problem complexity and representational size. 

− Testability concerns the ease of capturing and visualizing the multiplicity of 

behaviour by adequate coverage concepts and metrics; central to these activities are 

tools supporting the editing, import and export of data. 

In the light of the criteria mentioned above a number of well-known and widely used 

modelling languages allowing for concurrent behaviour are compared in the following. 

− Process algebras like CCS [Mi80] or CSP [Ho78] provide a formal algebraic 

description of model concurrency aspects capturing communication by explicit 

algebraic send and receive operators. 

− UML activity diagrams provide a semi-formal, graphical representation of activity 

flows which can be extended by dedicated profiles to include real-time concurrent 

behaviour; among them are the profile "Schedulability, Performance and Time" 

(SPT) [Om05], which allows for quantitative performance predictions, and its UML 

2 successor "Modelling and Analysis of Real-Time and Embedded Systems" 

(MARTE) [Om11]. 

− Petri Nets [Mu89] formalize concurrent behaviour by graphical entities 

representing actions (so-called transitions), as well as pre- and post-conditions (so-

called places). The fulfilment of conditions is represented by tokens marking 

corresponding places. In this way, Petri Nets succeed in capturing the interactions of 

autonomous systems by decentralizing the information referring to their states. 

− Coloured Petri Nets [JKW07] are an extension of Petri Nets allowing for the 

refinement of pre- and post-conditions while supporting scalability by use of 

different token types (so-called token colours). Details are presented in section 3. 

Process algebras possess a well-defined algebraic theory making them adequate for static 

analysis purposes. The lack of visual representation, however, does not offer sufficient 

support to intuitive comprehension and graphical coverage concepts. 

UML activity diagrams are widely used and provide an intuitive visualization of 

concurrency aspects. They lack, however, a formal operational semantics [SH05], as 

required by rigorous analysis techniques. 



Petri Nets are well suited for visualization and analysis purposes [Mu89]; unfortunately, 

the decentralized representation of states by generic tokens may lead to an exponential 

growth of places and transitions. In other words, their scalability may be severely 

limited. 

Compared to the other approaches, Coloured Petri Nets reveal as a promising candidate 

for modelling autonomous systems: CPNs are based on a sound mathematical basis 

resulting in unambiguous models that can be analyzed by simulation or formal 

techniques. Furthermore, they benefit from the visual clarity of Petri Nets by sharing 

their graphical elements, while overcoming the Petri Nets limitations concerning 

scalability: in fact, the use of specific tokens supports a compact state representation. In 

other words, when compared with Petri Nets CPNs offer higher scalability thanks to the 

higher level of the language. 

Consequently, CPNs are selected as a modelling notation to be further investigated. 

3 Coloured Petri Nets 

Coloured Petri Nets [Je94] differ from the original Petri Net notation by type-specific 

tokens. Depending on the colour set associated with a particular token, this token may 

assume different values denoted as the token colours. Additionally, transitions and arcs 

can be annotated by conditional expressions controlling the transition firing. In more 

detail, a CPN is a 9-tuple (P, T, A, Σ, V, C, G, E, I), where 

− P denotes a finite set of nodes p ∈ P denoted as places; 

− T denotes a disjoint finite set of nodes t ∈ T denoted as transitions, i.e. P ∩ T = ∅; 

− A ⊆ P × T ∪ T × P denotes a set of directed arcs connecting either places with 

transitions or transitions with places; 

− Σ denotes a finite set of non-empty sets denoted as colour sets; the elements of each 

colour set are denoted as colours;  

− V denotes a finite set of variables, each varying over a colour set, i.e. type[v] ∈ Σ ∀ 

v ∈ V; 

− C: P → Σ denotes a function (the so-called colour function) attaching to each place p 

∈ P a colour set C(p) ∈ Σ; C(p)MS denotes the multi-set over C(p) where each colour 

of the colour set C(p) may occur more than once; 

− G: T → EXPV is a function attaching to each transition t ∈ T a guard, i.e. a 

conditional expression G(t) over variables v ∈ V with type[G(t)] = Bool; 

− E: A → EXPV is a function attaching to each arc a ∈ A an expression E(a) over 

variables v ∈ V, with type[E(a)] ∈ C(p)MS, where p is a place connected with arc a;  

− I: P → C(p)MS denotes a function attaching to each place p ∈ P a so-called initial 

marking M(p) of type C(p)MS. 

The dynamic behaviour of a CPN is given by state changes due to successive firings of 

transitions. 



For a given transition t ∈ T a variable binding associates each variable occurring in at 

least one input arc expression of t with one of the colours belonging to the colour set of 

the corresponding input place(s). 

A transition t ∈ T with input places pi and input arcs ai: pi → t, i∈{1,…,k(t)} is enabled 

w.r.t. a particular variable binding if and only if  

− the value of G(t) w.r.t. the given variable binding is true and 

− for each colour of an input place the colour multiplicity in the multi-set obtained by 

evaluating the input arc expression E(ai) w.r.t. the given variable binding is not 

higher than the number of tokens of the same colour in the corresponding input 

place. 

After firing a transition t w.r.t. an enabling variable binding, a new marking is obtained 

from the previous marking by 

− removing from each input place as many tokens for each of its colours as indicated 

by the colour multiplicity in the multi-set resulting by evaluating the corresponding 

input arc expression w.r.t. the enabling variable binding; 

− adding to each output place as many tokens for each of its colours as indicated by 

the colour multiplicity in the multi-set resulting by evaluating the corresponding 

output arc expression w.r.t. the enabling variable binding. 

4 The Robot Factory 

In the following, a CPN model of an autonomous robot system is presented. The model 

was built using CPN Tools [JKW07]. Net annotations are expressed in the language 

CPN ML which extends the functional programming language SML [Mi97] by 

additional constructs for defining the CPN elements presented above. As commonly used 

in Petri Net visualizations, places and transitions are represented by circles and 

rectangles respectively. Guards are encapsulated in square brackets, arc inscriptions are 

annotated along the corresponding arcs and places are assigned corresponding colour 

sets by cross products of pre-defined basic colour sets. 



Figure 1: CPN Model of the Robot Factory 

The example depicts a factory where robots of type RB move from one area – a so-called 

SEGMENT – to another one. A central controller sends orders (r, s, scurr) to the local 

robot controllers where  

− r represents the robot addressed,  

− s represents the target segment of robot r, and  

− scurr represents the current location of robot r.  

To limit the complexity of the example, the robots only move along narrow lanes and 

obstacle passing manoeuvres are not included, thus limiting the robot behaviour to 

forward movement. It should be noted that the central controller does not hinder system 

autonomy, as it only provides the robots with orders, without dictating their behaviour 

for fulfilling their missions. Robots autonomously check whether their way to the next 

segment is free or blocked (modelled by transition look ahead). A robot can access this 

information thanks to its sensors (e.g. by camera or laser techniques). The functioning of 

the sensors is not explicitly modelled here, but could be easily included, e.g. by a 

hierarchical design. 



For the purpose of deriving valuable test scenarios from the modelled CPN, the 

necessary sensor data are simulated by the place blocked segments containing the local 

knowledge of each robot about the segment lying ahead. 

If the sensors of a robot detect a blockade, the information about the target segment and 

the robot is logged in the place way blocked by maintaining a list of blockades for every 

robot. Five continuously detected blockades of a certain robot trying to access a specific 

segment raise an alarm (modelled by transition alarm). To ensure this, CPN Tools 

allows to assign different priorities to transitions. The alarm was prioritized to avoid the 

interference of other transitions resulting in a potential alarm delay. Raising an alarm 

prevents any further transition from firing, requiring the intervention of a human 

operator. If a blockade can be resolved before raising an alarm, the blockades are flushed 

from the corresponding list. This is realized by the use of list colour sets in analogy to 

abstract list data types in programming languages. 

As soon as the way is not blocked by obstacles or other robots, a robot can move on 

(modelled by transition go ahead) resulting in an update of its current location scurr. 

If a robot eventually detects that its current segment position scurr equals its target 

position s, the given order is completed (modelled by transition mission completed) and 

logged. 

The strength of modelling the behaviour of autonomous systems by CPNs lies in their 

ability to capture a wide multiplicity of possible execution traces by a relatively compact 

representation. This results in a flexible format that can be easily adapted to application-

specific scenarios by changing the configuration of the CPNs (e.g. by varying the 

number of segments or robots). 

Possible execution traces regarding an initial net marking can be statically analyzed by 

exploring the reachability graph [Je94] or dynamically analyzed w.r.t. different test 

coverage criteria, as presented in the next chapter. 

5 Testing Coverage Criteria for CPNs 

Several CPN coverage criteria can be defined to determine appropriate scenarios during 

testing. For example, [ZH00] and [ZH02] introduce a number of coverage criteria 

originally defined for Predicate-Transition Petri Nets [GL81] which inspired the 

following classes of CPN testing criteria. 

− Transition-based coverage criteria focus on the occurrences of transition firings, 

requiring individual transition firings as well as sequences of transition firings of 

given length. 

− State-based coverage criteria focus on individual states or on state representatives 

of pre-defined state classes. 



− Flow-based coverage criteria focus on the production or consumption of at least 

one token (regardless of its colour) by individual transition firings or by sequences 

of transition firings. 

The above mentioned criteria can be extended to include the following coverage 

demands concerning CPN-specific entities, namely colour sets and variable bindings. 

− Colour-based coverage criteria focus on the production or consumption of tokens 

belonging to pre-defined colour sets. 

− Event-based coverage criteria focus on the individual or sequential occurrence of 

CPN events, where an event is defined as a transition together with an enabling 

variable binding. 

The information needed to measure the coverage regarding the criteria presented above 

can be extracted from models created in CPN Tools by the framework Access/CPN 

[WK09] which permits to access the internal model data. It is planned to apply this 

framework in order to generate test cases fulfilling the above mentioned CPN coverage 

criteria by means of evolutionary techniques. Analogous approaches have already been 

successfully applied to structural code coverage [OS06], to integration testing [SP10], as 

well as to the filtering of operational experience for the purpose of reliability assessment 

[Sö10]. 

6 Conclusion 

This article compares different modelling notations in terms of their expressive power 

and graphical support concerning structural testing of autonomous systems. The 

comparative evaluation of a number of alternative notations resulted in the selection of 

Coloured Petri Nets as the most promising option. As an example, a simple version of a 

robot factory was modelled by a CPN illustrating the benefits offered by its high 

scalability. Finally, a number of different CPN-based coverage criteria were introduced 

which will provide the basis for future research focused on the automatic generation of 

adequate testing scenarios. 

Acknowledgement: It is gratefully acknowledged that part of the work reported was sponsored by 

the European Union Research Programme ARTEMIS (Advanced Research and Technology for 

Embedded Intelligence and Systems), project R3-COP (Resilient Reasoning Robotic Co-operating 

Systems). 

 



References 

[GL81] Genrich, H. J.; Lautenbauch, K.: System Modelling with High-Level Petri 

Nets. In: Theoretical Computer Science, Vol. 13, Issue 1. Elsevier, 1981; pp. 

109-136. 

[Ho78] Hoare, C. A. R.: Communicating Sequential Processes. In: Communications of 

the ACM, Vol. 21, No. 8. ACM Digital Library, 1978; pp. 666-677. 

[Je94] Jensen, K.: An Introduction to the Theoretical Aspects of Coloured Petri Nets. 

In (de Bakker, J. W.; de Roever, W.-P.; Rozenberg, G. Eds.): A Decade of 

Concurrency - Reflections and Perspectives, Proc. REX School/Symposium, 

Noordwijkerhout, the Netherlands, 1993. Vol. LNCS 803, Springer-Verlag, 

1994; pp. 230-272. 

[JKW07] Jensen, K.; Kristensen, L. M.; Wells, L.: Coloured Petri Nets and CPN Tools 

for Modelling and Validation of Concurrent Systems. In: International Journal 

on Software Tools for Technology Transfer (STTT), Vol. 9, No. 3-4. Springer-

Verlag, 2007; pp. 213-254. 

[Mi80] Milner, R.: A Calculus of Communicating Systems. Vol. LNCS 92, Springer-

Verlag, 1980. 

[Mi97] Milner, R. et al.: The Definition of Standard ML (Revised). MIT Press, 1997. 

[Mu89] Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proc. IEEE, 

Vol. 77, No. 4. IEEE, 1989; pp. 541-580. 

[Om05] Object Management Group: UML Profile for Schedulability, Performance and 

Time Specification. Version 1.1, formal/05-01-02, 2005. 

[Om11] Object Management Group: UML Profile for MARTE: Modeling and Analysis 

of Real-Time Embedded Systems. Version 1.1, formal/2011-06-02, 2011. 

[OS06] Oster, N.; Saglietti, F.: Automatic Test Data Generation by Multi-Objective 

Optimisation. In (Górski, J. Ed.): Proc. 25th Int. Conf. on Computer Safety, 

Reliability, and Security, SAFECOMP 2006, Gdanks, Poland, 2006. Vol. 

LNCS 4166, Springer-Verlag, 2006; pp. 426-438. 

[SH05] Störrle, H.; Hausmann, J. H.: Towards a Formal Semantics of UML 2.0 

Activities. In (Liggesmeyer, P.; Pohl, K.; Goedicke, M. Eds.): Proc. Software 

Engineering 2005, Essen, Germany, 2005. Vol. LNI 64, Köllen Verlag, 2005; 

pp. 117-128. 

[SP10] Saglietti, F.; Pinte, F.: Automated Unit and Integration Testing for Component-

based Software Systems. In: Proc. Workshop on Dependability and Security 

for Resource Constrained Embedded Systems (D&S4RCES’10), Vienna, 

Austria, 2010. ACM Digital Library, 2010. 

 



[Sö10] Söhnlein, S. et al.: Software Reliability Assessment based on the Evaluation of 

Operational Experience. In (Müller-Clostermann, B.; Echtle, K.; Rathgeb, E. P. 

Eds.): Proc. 15th International GI/ITG Conference on Measurement, 

Modelling, and Evaluation of Computing Systems and Dependability in Fault 

Tolerance, MMB&DFT 2010, Essen, Germany, 2010. Vol. LNCS 5987, 

Springer-Verlag, 2010; pp. 24-38. 

[WK09] Westergaard, M.; Kristensen, L. M.: The Access/CPN Framework: A Tool for  

Interacting with the CPN Tools Simulator. In (Franceschinis, G.; Wolf, K. 

Eds.): Proc. 30th Int. Conf. on Applications and Theory of Petri Nets, PETRI 

NETS 2009, Paris, France, 2009. Vol. LNCS 5606, Springer-Verlag, 2009; pp. 

313-322. 

[ZH00] Zhu, H.; He, X.: A Theory of Testing High Level Petri Nets. In (Feng, Y.; 

Notkin, D.; Gaudel, M.-C. Eds.): Proc. 16th Int. Conf. on Software - Theory 

and Practice, IFIP World Computer Congress 2000, Beijing, China, 2000. 

Publishing House of Electronics Industry, 2000; pp. 443-450. 

[ZH02] Zhu, H.; He, X.: A Methodology of Testing High-Level Petri Nets. In: 

Information and Software Technology, Vol. 44, No. 8. Elsevier, 2002; pp. 473-

489. 


